linelist philosophy is to prevent you from accidentally losing valuable data, but to otherwise be totally transparent and not interfere with your workflow.
One popular ecosystem for data science workflow is the tidyverse and
we are going the extra mile to ensure linelist compatibility with the
tidyverse. All dplyr verbs are thoroughly tested in the
tests/test-compat-dplyr.R
file.
library(linelist)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
data("measles_hagelloch_1861", package = "outbreaks")
x <- make_linelist(
measles_hagelloch_1861,
id = "case_ID",
date_onset = "date_of_prodrome",
age = "age",
gender = "gender"
)
head(x)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
linelist does not modify anything regarding the behaviour for row-operations. As such, it is fully compatible with dplyr verbs operating on rows out-of-the-box. You can see in the following examples that linelist does not produce any errors, warnings or messages and its tags are conserved through dplyr operations on rows.
dplyr::arrange()
✅x %>%
arrange(case_ID) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
dplyr:distinct()
✅x %>%
distinct() %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
dplyr::filter()
✅x %>%
filter(age >= 10) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 2 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> 3 8 45 1861-11-21 1861-11-26 <NA> 10 m
#> 4 9 182 1861-11-26 1861-11-30 <NA> 13 m
#> 5 11 182 1861-11-25 1861-11-30 <NA> 11 f
#> 6 13 12 1861-11-30 1861-12-05 <NA> 13 m
#> family_ID class complications x_loc y_loc
#> 1 61 2 yes 165.0 102.5
#> 2 42 2 yes 145.0 120.0
#> 3 44 1 yes 97.5 155.0
#> 4 44 2 yes 97.5 155.0
#> 5 27 2 yes 270.0 135.0
#> 6 32 2 yes 195.0 27.5
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
dplyr::slice()
✅x %>%
slice(5:10)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 2 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> 3 7 42 1861-11-24 1861-11-28 <NA> 6 m
#> 4 8 45 1861-11-21 1861-11-26 <NA> 10 m
#> 5 9 182 1861-11-26 1861-11-30 <NA> 13 m
#> 6 10 45 1861-11-21 1861-11-25 <NA> 7 f
#> family_ID class complications x_loc y_loc
#> 1 42 1 yes 145.0 120.0
#> 2 42 2 yes 145.0 120.0
#> 3 26 0 yes 272.5 147.5
#> 4 44 1 yes 97.5 155.0
#> 5 44 2 yes 97.5 155.0
#> 6 29 1 yes 240.0 75.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
x %>%
slice_head(n = 5)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
x %>%
slice_tail(n = 5)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 184 NA 1861-10-30 1861-11-06 <NA> 13 <NA>
#> 2 185 82 1861-12-03 1861-12-07 <NA> 3 m
#> 3 186 45 1861-11-22 1861-11-26 <NA> 6 <NA>
#> 4 187 82 1861-12-07 1861-12-11 <NA> 0 m
#> 5 188 175 1861-11-23 1861-11-27 <NA> 1 <NA>
#> family_ID class complications x_loc y_loc
#> 1 51 2 yes 182.5 200.0
#> 2 21 0 yes 205.0 182.5
#> 3 57 0 yes 212.5 90.0
#> 4 21 0 yes 205.0 182.5
#> 5 57 0 yes 212.5 90.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
x %>%
slice_min(age, n = 3)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 113 31 1861-12-04 1861-12-07 <NA> 0 f
#> 2 119 116 1861-12-01 1861-12-08 <NA> 0 f
#> 3 147 18 1861-12-03 1861-12-07 <NA> 0 f
#> 4 150 148 1861-12-11 1861-12-15 <NA> 0 m
#> 5 160 68 1861-12-12 1861-12-13 <NA> 0 f
#> 6 167 110 1861-12-14 1861-12-18 <NA> 0 m
#> 7 171 169 1861-12-15 1861-12-17 <NA> 0 m
#> 8 176 146 1861-12-11 1861-12-15 <NA> 0 <NA>
#> 9 187 82 1861-12-07 1861-12-11 <NA> 0 m
#> family_ID class complications x_loc y_loc
#> 1 15 0 yes 125.0 187.5
#> 2 40 0 yes 127.5 147.5
#> 3 13 0 yes 72.5 152.5
#> 4 19 0 yes 255.0 230.0
#> 5 16 0 yes 165.0 192.5
#> 6 49 0 yes 175.0 140.0
#> 7 38 0 yes 132.5 80.0
#> 8 64 0 yes 72.5 152.5
#> 9 21 0 yes 205.0 182.5
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
x %>%
slice_max(age, n = 3)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 16 181 1861-11-21 1861-11-25 <NA> 15 f
#> 2 62 11 1861-12-02 1861-12-06 <NA> 14 m
#> 3 117 116 1861-12-02 1861-12-06 <NA> 14 m
#> family_ID class complications x_loc y_loc
#> 1 43 2 yes 172.5 172.5
#> 2 8 2 yes 270.0 102.5
#> 3 40 2 yes 127.5 147.5
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
x %>%
slice_sample(n = 5)
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 106 42 1861-11-23 1861-11-26 <NA> 4 m
#> 2 153 45 1861-11-24 1861-11-27 <NA> 10 f
#> 3 8 45 1861-11-21 1861-11-26 <NA> 10 m
#> 4 28 180 1861-11-25 1861-11-30 <NA> 10 f
#> 5 35 182 1861-11-25 1861-11-30 <NA> 13 f
#> family_ID class complications x_loc y_loc
#> 1 34 0 yes 170.0 17.5
#> 2 37 1 yes 132.5 80.0
#> 3 44 1 yes 97.5 155.0
#> 4 65 2 yes 15.0 47.5
#> 5 10 2 yes 190.0 115.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
During operations on columns, linelist will:
lost_tags_action()
if tagged columns are
affected by the operationdplyr::mutate()
✓ (partial)There is an incomplete compatibility with
dplyr::mutate()
in that simple renames without any actual
modification of the column don’t update the tags. In this scenario,
users should rather use dplyr::rename()
Although dplyr::mutate()
is not able to leverage to full
power of linelist tags, linelist objects behave as expected the same way
a data.frame would:
# In place modification doesn't lose tags
x %>%
mutate(age = as.integer(age)) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
# New columns don't affect existing tags
x %>%
mutate(major = age >= 18) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc major
#> 1 41 1 yes 142.5 100.0 FALSE
#> 2 41 1 yes 142.5 100.0 FALSE
#> 3 41 0 yes 142.5 100.0 FALSE
#> 4 61 2 yes 165.0 102.5 FALSE
#> 5 42 1 yes 145.0 120.0 FALSE
#> 6 42 2 yes 145.0 120.0 FALSE
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
# .keep = "unused" generate expected tag loss conditions
x %>%
mutate(edad = age, .keep = "unused") %>%
head()
#> Warning: The following tags have lost their variable:
#> age:age
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death gender family_ID
#> 1 1 45 1861-11-21 1861-11-25 <NA> f 41
#> 2 2 45 1861-11-23 1861-11-27 <NA> f 41
#> 3 3 172 1861-11-28 1861-12-02 <NA> f 41
#> 4 4 180 1861-11-27 1861-11-28 <NA> m 61
#> 5 5 45 1861-11-22 1861-11-27 <NA> f 42
#> 6 6 180 1861-11-26 1861-11-29 <NA> m 42
#> class complications x_loc y_loc edad
#> 1 1 yes 142.5 100.0 7
#> 2 1 yes 142.5 100.0 6
#> 3 0 yes 142.5 100.0 4
#> 4 2 yes 165.0 102.5 13
#> 5 1 yes 145.0 120.0 8
#> 6 2 yes 145.0 120.0 12
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender
dplyr::pull()
✅dplyr::pull()
returns a vector, which results, as
expected, in the loss of the linelist class and tags:
x %>%
pull(age)
#> [1] 7 6 4 13 8 12 6 10 13 7 11 7 13 13 8 15 10 2 11 10 13 10 7 4 12
#> [26] 7 5 10 13 11 9 7 7 11 13 11 13 12 10 13 12 4 2 10 7 13 11 3 10 6
#> [51] 4 13 6 4 11 8 3 9 10 2 5 14 12 7 2 5 11 2 1 13 10 10 11 10 13
#> [76] 2 8 11 5 12 12 8 10 6 5 3 12 10 3 11 4 2 8 4 1 2 10 3 5 12
#> [101] 7 12 12 5 3 4 12 6 6 3 12 10 0 13 11 8 14 2 0 1 10 1 1 3 2
#> [126] 5 1 5 4 12 1 11 2 13 2 13 10 11 13 2 4 5 11 2 8 4 0 13 4 0
#> [151] 2 4 10 6 13 8 4 3 2 0 6 6 1 3 2 1 0 1 4 10 0 3 6 3 2
#> [176] 0 8 4 1 10 10 13 4 13 3 6 0 1
dplyr::relocate()
✅x %>%
relocate(date_of_prodrome, .before = 1) %>%
head()
#>
#> // linelist object
#> date_of_prodrome case_ID infector date_of_rash date_of_death age gender
#> 1 1861-11-21 1 45 1861-11-25 <NA> 7 f
#> 2 1861-11-23 2 45 1861-11-27 <NA> 6 f
#> 3 1861-11-28 3 172 1861-12-02 <NA> 4 f
#> 4 1861-11-27 4 180 1861-11-28 <NA> 13 m
#> 5 1861-11-22 5 45 1861-11-27 <NA> 8 f
#> 6 1861-11-26 6 180 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
dplyr::rename()
& dplyr::rename_with()
✅dplyr::rename()
is fully compatible out-of-the-box with
linelist, meaning that tags will be updated at the same time that
columns are renamed. This is possibly because it uses
names<-()
under the hood, which linelist provides a
custom names<-.linelist()
method for:
x %>%
rename(edad = age) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death edad gender
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> family_ID class complications x_loc y_loc
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:edad
x %>%
rename_with(toupper) %>%
head()
#>
#> // linelist object
#> CASE_ID INFECTOR DATE_OF_PRODROME DATE_OF_RASH DATE_OF_DEATH AGE GENDER
#> 1 1 45 1861-11-21 1861-11-25 <NA> 7 f
#> 2 2 45 1861-11-23 1861-11-27 <NA> 6 f
#> 3 3 172 1861-11-28 1861-12-02 <NA> 4 f
#> 4 4 180 1861-11-27 1861-11-28 <NA> 13 m
#> 5 5 45 1861-11-22 1861-11-27 <NA> 8 f
#> 6 6 180 1861-11-26 1861-11-29 <NA> 12 m
#> FAMILY_ID CLASS COMPLICATIONS X_LOC Y_LOC
#> 1 41 1 yes 142.5 100.0
#> 2 41 1 yes 142.5 100.0
#> 3 41 0 yes 142.5 100.0
#> 4 61 2 yes 165.0 102.5
#> 5 42 1 yes 145.0 120.0
#> 6 42 2 yes 145.0 120.0
#>
#> // tags: id:CASE_ID, date_onset:DATE_OF_PRODROME, gender:GENDER, age:AGE
dplyr::select()
✅dplyr::select()
is fully compatible with linelist,
including when columns are renamed in a select()
:
# Works fine
x %>%
select(case_ID, date_of_prodrome, gender, age) %>%
head()
#>
#> // linelist object
#> case_ID date_of_prodrome gender age
#> 1 1 1861-11-21 f 7
#> 2 2 1861-11-23 f 6
#> 3 3 1861-11-28 f 4
#> 4 4 1861-11-27 m 13
#> 5 5 1861-11-22 f 8
#> 6 6 1861-11-26 m 12
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
# Tags are updated!
x %>%
select(case_ID, date_of_prodrome, gender, edad = age) %>%
head()
#>
#> // linelist object
#> case_ID date_of_prodrome gender edad
#> 1 1 1861-11-21 f 7
#> 2 2 1861-11-23 f 6
#> 3 3 1861-11-28 f 4
#> 4 4 1861-11-27 m 13
#> 5 5 1861-11-22 f 8
#> 6 6 1861-11-26 m 12
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:edad
Groups are not yet supported. Applying any verb operating on group to a linelist will silently convert it back to a data.frame or tibble.
dplyr::bind_cols()
✘bind_cols()
is currently incompatible with linelist:
bind_cols(
suppressWarnings(select(x, case_ID, date_of_prodrome)),
suppressWarnings(select(x, age, gender))
) %>%
head()
#> Warning: The following tags have lost their variable:
#> id:case_ID, date_onset:date_of_prodrome
#> Warning: The following tags have lost their variable:
#> gender:gender, age:age
#>
#> // linelist object
#> case_ID date_of_prodrome age gender
#> 1 1 1861-11-21 7 f
#> 2 2 1861-11-23 6 f
#> 3 3 1861-11-28 4 f
#> 4 4 1861-11-27 13 m
#> 5 5 1861-11-22 8 f
#> 6 6 1861-11-26 12 m
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome
Joins are currently not compatible with linelist as tags from the second element are silently dropped.
full_join(
suppressWarnings(select(x, case_ID, date_of_prodrome)),
suppressWarnings(select(x, case_ID, age, gender))
) %>%
head()
#> Joining with `by = join_by(case_ID)`
#>
#> // linelist object
#> case_ID date_of_prodrome age gender
#> 1 1 1861-11-21 7 f
#> 2 2 1861-11-23 6 f
#> 3 3 1861-11-28 4 f
#> 4 4 1861-11-27 13 m
#> 5 5 1861-11-22 8 f
#> 6 6 1861-11-26 12 m
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome
dplyr::pick()
✘pick()
makes tidyselect functions work in usually
tidyselect-incompatible functions, such as:
x %>%
dplyr::arrange(dplyr::pick(ends_with("loc"))) %>%
head()
#>
#> // linelist object
#> case_ID infector date_of_prodrome date_of_rash date_of_death age gender
#> 1 26 45 1861-11-22 1861-11-27 <NA> 7 m
#> 2 28 180 1861-11-25 1861-11-30 <NA> 10 f
#> 3 146 172 1861-12-01 1861-12-07 <NA> 4 f
#> 4 147 18 1861-12-03 1861-12-07 <NA> 0 f
#> 5 176 146 1861-12-11 1861-12-15 <NA> 0 <NA>
#> 6 115 16 1861-12-01 1861-12-07 <NA> 11 f
#> family_ID class complications x_loc y_loc
#> 1 67 1 yes 7.5 37.5
#> 2 65 2 yes 15.0 47.5
#> 3 13 0 yes 72.5 152.5
#> 4 13 0 yes 72.5 152.5
#> 5 64 0 yes 72.5 152.5
#> 6 66 2 yes 75.0 20.0
#>
#> // tags: id:case_ID, date_onset:date_of_prodrome, gender:gender, age:age
As such, we could expect it to work with linelist custom
tidyselect-like function: has_tag()
but it’s not the case
since pick()
currently strips out all attributes, including
the linelist
class and all tags. This unclassing is
documented in ?pick
:
pick()
returns a data frame containing the selected columns for the current group.