NEWS


serofoi 1.0.2

New features

Breaking changes

Minor changes

Internal changes

serofoi 0.1.0

New features

foi_sim_constant <- rep(0.02, 50)

serodata_constant <- generate_sim_data(  
  sim_data = data.frame(  
    age = seq(1, 50),  
    tsur = 2050),  
  foi = foi_sim_constant,  
  sample_size_by_age = 5  
)  

To generate grouped serosurveys the function group_sim_data can be used:

serodata_constant <- group_sim_data(serodata_constant, step = 5)

Breaking changes

    seromodel_object <- list(
      fit = fit,
      seromodel_fit = seromodel_fit,
      serodata = serodata,
      serodata = serodata,
      stan_data = stan_data,
      ...
    )
seromodel <- fit_seromodel(
  serodata,
  foi_model = "tv_normal",
  foi_location = 0,
  foi_scale = 1
)

Depending on the selected model foi_model, the meaning of the parameters change. For the tv_normal_log model these parameters must be in logarithmic scale; the recommended usage is:

seromodel <- fit_seromodel(
  serodata,
  foi_model = "tv_normal_log",
  foi_location = -6,
  foi_scale = 4
)
data(chagas2012)
serodata <- prepare_serodata(chagas2012)
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal")

image

seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunk_size = 10)

image

or explicitly:

chunks <- rep(c(1, 2, 3, 4, 5), c(10, 10, 15, 15, max(serodata$age_mean_f)-50))
seromodel <- fit_seromodel(serodata, foi_model = "tv_normal", chunks = chunks)

image

Minor changes

Internal changes

serofoi 0.0.9

This release of serofoi, includes the following:

  1. Implementation of package modules: Incorporates data preparation, modelling, and visualization modules, they enable efficient handling of data, perform statistical modelling, and generate visual representations of the results.
  2. Documentation: It consists of vignettes, a website, and uses cases that provide detailed instructions on how to use the package effectively.
  3. Implementation of 3 models for calculating the Force-of-Infection (FoI): The first model is the constant or endemic model, which assumes a stable FoI over time. The second and third models are time-varying, with the normal FoI model representing a slow change in FoI and the normal-log FoI model representing a fast epidemic change in FoI.
  4. Definition of coverage test to assurance the quality of the package.

Overall, this release introduces essential package functionality, comprehensive documentation, various FoI models, and a coverage test, enabling users to analyse seroprevalence data and calculate the Force-of-infection.